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LETTER TO THE EDITOR

Replica theory of granular media
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Instituto de F́ısica, UFRGS, CP 15051, 91501-970, Porto Alegre RS, Brazil

Received 2 September 1998

Abstract. An infinite range spin-glass-like model for granular systems is introduced and studied
through the replica mean-field formalism. Equilibrium, density-dependent properties under
vibration and gravity are obtained that qualitatively resemble the results from real and numerical
experiments.

Handling of granular material occurs in many agricultural and industrial processes and several
fundamental practical problems are still unsolved. The unusual static and flow properties [1,2]
offer a challenging problem from the theoretical point of view, and despite the huge effort
that has been devoted in recent years, are far from being fully understood. Since thermal
energy plays no role here, excitations can be achieved by externally shaking or shearing the
system, enabling them to wander through the many microscopic configurations available for a
fixed macroscopic density. Under vibration, a multitude of fascinating phenomena show up,
like heap formation, convection cells, size or shape segregation, surface waves, etc (see [1,2]
for a review and references). Slow relaxation under perturbations is also present, signalling
complex cooperative movement of the particles and resembling that found in systems with
many metastable states like glasses and spin glasses. Indeed, the density increases with a
logarithmically slow rate as the system suffers a sequence of taps [3].

The analogy between glassy and granular behaviour was suggested some time ago [1, 2]
and stressed recently, along with the role of geometric frustration [4]. This frustration arises
from the excluded volume of the grains, imposing restrictions on their relative positions. For
glass-forming liquids, a simple frustrated lattice gas (FLG) has been introduced [6] that takes
explicitly into account these steric effects and bridges complex fluids (glasses) and complex
magnets (spin glasses). Kinetically constrained lattice gas models with trivial Hamiltonians
have also been introduced [7], well reproducing the glassy phenomenology. An infinite range
version [8, 9] has also been studied in the framework of replica theory, yielding a very rich
equilibrium phase diagram. In order to apply this model for granular systems, Nicodemi
et al [10] introduced the effects of gravity studying a tilted 2D lattice while applying a
sequence of taps, the particles following a diffusion-like Monte Carlo dynamics. Among
several interesting properties, analogous to those found in real experiments, the system displays
an inverse logarithmic compactation behaviour, reversible–irreversible cycles, aging, as well
as a localization transition, signalled by a zero diffusion constant, in which the particles get
trapped into dynamical local cages. This transition point seems to correspond to the Reynolds
(or dilatancy) transition observed in real systems. Similar results have also been found for a
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Figure 1. System architecture withL layers, connections being only between nearest-neighbour
layers.

related model, the Tetris [11] (see also [12] for a related description at the clusters level). As
a simple lattice model, it has several advantages. From the computational point of view, the
simulation cost is much lower than molecular dynamics. From the theoretical side, besides
the amenability to theoretical investigation explored here, it helps in grasping the fundamental
concepts involved, responsible for the complex observed phenomena.

In the same spirit as Sherrington and Kirkpatrick [13] studied a solvable version of the
Edwards–Anderson model [14] in which the mean field is exact, here we introduce an infinite
range version of the FLG consideringL layers ofN sites, connections being only between
nearest-neighbour layers (see figure 1). Each site may be occupied by a particle (ni = 0, 1), and
although they may assume many spatial orientations, here we take the simplest case,Si = ±1.
The occupation of a given site is facilitated either if the neighbouring ones are empty or if their
particles have the right relative orientation. These imposed steric effects are felt as restrictions
on the particle orientation (or even presence) and are included in the Hamiltonian as quenched,

Gaussian-distributed lattice bondsJ `ij with J `ij = 0 and(J `ij )
2 = J/N . Although the geometric

frustration on the internal degrees of freedom should be considered annealed at low densities
and almost quenched at high ones, the quenched approximation is sufficiently good, as can
be seen from the 2D results [5, 6]. Furthermore, each layer has its own chemical potential
satisfyingµ`+1 > µ` (counting from top to bottom) that accounts for the effect of gravity and
µ` = g`/L in order to have a constant force. Thus, we consider the following Hamiltonian:

H = −
∑
i<j

L−1∑
`=1

(
J `ij S

`
i S

`+1
j +

K

N

)
n`i n

`+1
j −

L−1∑
`=1

µ`
∑
i

n`i . (1)

The parameterK = −1+K ′may tune the repulsive/attractive (K ′ negative/positive) interaction
between particles [9] and may be important to treat wet powders. Here, as in the original model,
we considerK = −J = −1 (K ′ = 0). Notice that the value−1 appears originally in order
to recover, in the limitJ � 1, the frustrated percolation (FP) [5] constraint of only allowing
non-frustrated loops to be fully occupied. In this limit, two given neighbouring sites, could
only be occupied (ninj = 1) if the corresponding orientations satisfied the local disorder,
JijSiSj = 1; otherwise at least one site should be empty (ninj = 0). It is also important to
point out that by changing the value ofK, several new, qualitatively different, phases appear,
in both frustrated, or not, versions of the Blume–Emery–Griffiths (BEG) model (see [9] and
references therein). In the limit where all sites are occupied, we get a layered version of the
SK model (LSK). This model has a continuous transition from a spin glass (q` 6= 0) phase to
a paramagnetic one (q` = 0, ∀`) at T SKc = 1/

√
2xc wherexc is the lowest positive root of a
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polynomial recursively obtained byPSKL (x) = PSKL−1(x)− x2PSKL−2(x) with PSK0 = PSK1 = 1.
A similar result [16] has been found for a modified mean-field version of the McCoy–Wu
model [17]. This critical temperature approaches unity asL→∞.

In evaluating the free energy, the trace is restricted to states with a fixed densityρ. Using
standard techniques for dealing with disordered systems [18] and assuming replica symmetry,
the free energy reads

f = β

4

∑
`

q`q`+1− 1

2

(
β

2
− 1

)∑
`

d`d`+1 + β
∑
`

t`d` −
∑
`

(µ0 +µ`)d`

−β
2

∑
`

r`q` − L
β

ln 2 +µ0ρL− 1

β

∑
`

∫
Dz ln{1 + cosh(β

√
r`z)e

−4`} (2)

whereDz = dz/
√

2π exp(−z2/2) and the temperatureT = β−1 is a measure of the
vibration imposed to the system. The order parameters are a diluted Edwards–Anderson
q`ab = 〈Sa`na`Sb`nb`〉 and the densityd`a = 〈na`〉 while µ0 accounts for the constraint
ρ = L−1∑

` d` and

4` = β2

4
(q`+1 + q`−1)− β

2

(
β

2
− 1

)
(d`+1 + d`−1)− β(µ` +µ0). (3)

The saddle point equations arer` = (q`−1 + q`+1)/2 and

q` =
∫
Dz

sinh2(β
√
r`z)

[e4` + cosh(β
√
r`z)]2

(4)

d` =
∫
Dz

cosh(β
√
r`z)

e4` + cosh(β
√
r`z)

(5)

whereq0 = d0 = qL+1 = dL+1 = 0. A global order parameter may be introduced as
Q = L−1∑

` q`.
There is a critical temperatureTc above which allq` are zero, that is,Q = 0. Figure 2

shows, forL = 100, the critical temperature as a function of density for several values of
g. Notice that the bigger the density, the stronger should be the vibration in order to get a
fluid state, similar to what happens for fixed density and increasing gravity. Wheng = 0 (no
gravity),d` = ρ (∀`) andTc = ρT SKc whereT SKc is the critical temperature of theL-layered
SK model (see below). On the other limit, wheng → ∞ (strong gravity), in analogy with
the LSK model, the critical temperature is related with the smallest positive rootx∗ of a given
polynomial,Tc = 1/

√
2x∗, depending on the densityρ. For 06 ρ 6 1/L we haveTc = 0,

because all particles occupy the lowest layer and do not interact. For 1/L 6 ρ 6 2/L, some
sites occupy the second-lowest layer and the critical temperature is obtained with the root
of P2(x). In general, for(n − 1)/L 6 ρ 6 n/L, the relevant polynomial isPn(x). These
polynomials are obtained recursively by

P`(x) = P`−1(x)

δ`L(ρL− L + 1)2 + (1− δ`L) − x
2P`−2(x) (6)

with P0(x) = P1(x) = 1. In this limit, the critical temperature goes to unity for largeL.
The density andq profiles are shown in figure 3 as a function of the system height`/L.

Interestingly enough, the density profile shows, even at low temperature, that frustration effects
are important in preventing a close-packed configuration, signalled by a density lower than one.
It is important to stress that, in analogy with the FLG [8], there are two regimes of densities
depending on the gravity: one is the LSK regime for largeg with the particles settling in
the lowest possible layers disregard the geometric effects and the second and most interesting
one, shown here, where the steric effects become important. Although theq-profile seems to
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Figure 2. Phase diagramTc versusρ for L = 100 andg from 0 (straight line) to 5 (top curve),
showing the disordered phase (q` = 0, ∀`) and a spin-glass phase (q` 6= 0).
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Figure 3. Density profile as a function ofy = `/L for L = 1000,ρ = 0.5, g = 1 and several
values ofT . At high temperatures we recover the original mean-field FLG as the density becomes
uniform. Inset: profile ofq`. Although the curve seems to go to zero above a certain layer, it
actually does not do so for finiteL. The onset of fluidization arrives at once for every layer.

vanish above a given height, it actually does not do so for finiteL, and as we approach the
continuous limit (L→ ∞), a new transition settles down. From experiments and molecular
dynamics simulation [20, 21], as a function of the vibration, the system passes from a solid-
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Figure 4. Transition line 1−`c/L showing the higher, fluidized layers and the lower, solid (q` 6= 0)
ones forg = 1, ρ = 0.5 and largeL. The onset of fluidization occurs atTF ' 0.11 while the
system is completely fluidized aboveTc ' 0.66. ForT < TF we haveq` 6= 0 for every non-empty
layer and since there is no longer a solid–fluid interface, just the material surface, we do not show
the line. The transition is first order forTF < T < Ttrc ' 0.24 and continuous up toTc.

like behaviour to a fluid–solid coexistence region. After this onset of fluidization, the topmost
layers become fluid-like, the particles having a great mobility. The interface between those
regions decreases its height as the vibration increases. Although in this context a fluid regime
means a situation where the particles present translational mobility, here we consider the case
where the freedom is orientational, that is, a fluid layer will be one havingq` = 0. However,
in some sense, both are a measure of the amount of geometrical constraints imposed on the
particles by their neighbours. Moreover, when simulating the 3D system in the absence of
gravity [6], it can be seen that at the glass transition, the diffusion coefficient does vanish,
corroborating our use of the term. For increasing values ofLwe can extrapolate the numerical
results and find the critical layer,̀c(T ), separating the fluid region (q` = 0) and the solid
one (q` 6= 0). The temperature where this first happens, signalling the onset of fluidization,
is denoted byTF and the transition is discontinuous fromTF up toTtrc, while continuous for
Ttrc < T < Tc. Notice that belowTF all non-empty layers haveq` 6= 0. The pointTtrc is
reminiscent of the tricritical point found in the disordered BEG model [8, 9] (remember that
we have a varying chemical potential in the vertical axis). This information is summarized
in figure 4. Notice that although in figure 3 the top most layers haveq` = 0 belowTF , they
are empty. Moreover, the density profile has been measured both in real experiments [19] as
well as in simulations [20], showing that in the steady state, independently of the phase of the
up and down motion of the heap, the density profile is always preserved. This fact, indicating
that configurational properties may be obtained through appropriate averages, independently
of the dynamics, supports our equilibrium results and has also led to thermodynamic theories
of granular systems [22]. Also, as the granular temperature increases, there is an elevation of
the centre of mass of the system [15], given byhCM = (ρL)−1∑

` `d` and this is a function
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of both temperature and gravity.
There are a multitude of possibilities that still remain to be explored. First of all, the

stability of the replica symmetric solution employed here and the behaviour of response
functions, like the compressibility, for example. Also, the effects of segregation on
polydisperse mixtures observed experimentally [1,2] and in the 2D model [26], can be included
by allowing different degrees of frustration for each type of particle in the Hamiltonian [23].
Results on the 2D model show that the out-of-equilibrium dynamics, when the system is
subject to small, continuous shaking [24], present aging in the two-times correlation function
C(t, tw) for the bulk density, remaniscent of the glassy nature of the model [25]. In view
of this, it would be extremely interesting to study in detail the mean-field equations for the
dynamics [27]. Different coupling distributions, e.g. bimodal, may be studied by means of the
TAP formalism [28]. In the limit of largeL, the density andq profile should obey a set of
coupled differential equations, from which some analytical results may be obtained. From the
simulational point of view, research is in course to study how compaction and segregation are
affected by interpolating from the 2D model to the mean-field case, along with the effects of
attraction (K > −1) between the particles, as in wet powders. Besides that, the fluidization
transition may be detected on the simulation by measuring the mean-squared displacement for
each particle,R2

i (t) (instead of the system average) and comparing with its mean height.
In conclusion, we introduced an infinite range version of a FLG model [4,10] for granular

systems and applied, to our knowledge for the first time, the replica formalism to these systems.
In this mean-field version, we are able to study stationary properties, obtaining the vibration,
density and gravity dependent phase digram as well as information on the density profile and
the onset of fluidization.
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and the warm hospitality of the Dipartimento di Scienze Fisiche (Università di Napoli, Italy)
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[18] Mézard M, Parisi G and Virasoro M A 1987Spin Glass and Beyond(Singapore: World Scientific)



Letter to the Editor L113

[19] Clement E and Rajchenbach J 1991Europhys. Lett.16133
[20] Gallas J A C,Herrmann H J and Sokolowski S 1992PhysicaA 189437
[21] Taguchi Y-H 1993Europhys. Lett.24203
[22] Hayakawa H and Hong D C 1997Phys. Rev. Lett.782764
[23] Arenzon J J and Nicodemi M in preparation
[24] Nicodemi M and Coniglio A 1998Preprintcond-mat/9803148
[25] Stariolo D and Arenzon J J 1999Phys. Rev.E at press
[26] Caglioti E, Coniglio A, Herrmann H J, Loreto V and Nicodemi M 1998Europhys. Lett.43591
[27] Cugliandolo L F and Kurchan J 1993Phys. Rev. Lett.71173

Cugliandolo L F and Kurchan J 1994J. Phys. A: Math. Gen.275749
[28] Thouless D J, Anderson P W and Palmer R G 1977Phyl. Mag.35593


